Minimum Cost Homomorphisms to Reflexive Digraphs
نویسندگان
چکیده
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If moreover each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), is the following problem. Given an input digraph G, together with costs ci(u), u ∈ V (G), i ∈ V (H), and an integer k, decide if G admits a homomorphism to H of cost not exceeding k. Minimum cost homomorphism problems encompass (or are related to) many well studied optimization problems such as chromatic partition optimization and applied problems in repair analysis. For undirected graphs the complexity of the problem, as a function of the parameter H, is well understood; for digraphs, the situation appears to be more complex, and only partial results are known. We focus on the minimum cost homomorphism problem for reflexive digraphs H (every vertex of H has a loop). It is known that the problem MinHOM(H) is polynomial time solvable if the digraph H has a Min-Max ordering, i.e., if its vertices can be linearly ordered by < so that i < j, s < r and ir, js ∈ A(H) imply that is ∈ A(H) and jr ∈ A(H). We give a forbidden induced subgraph characterization of reflexive digraphs with a Min-Max ordering; our characterization implies a polynomial time test for the existence of a Min-Max ordering. Using this characterization, we show that for a reflexive digraph H which does not admit a Min-Max ordering, the minimum cost homomorphism problem is NP-complete, as conjectured by Gutin and Kim. Thus we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for reflexive digraphs.
منابع مشابه
The Dichotomy of Minimum Cost Homomorphism Problems for Digraphs
The minimum cost homomorphism problem has arisen as a natural and useful optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended MinMax ordering is polynomial time solv...
متن کاملMinimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...
متن کاملMinimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...
متن کاملMinimum Cost Homomorphisms to Semicomplete Bipartite Digraphs
For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide, for an input graph D with costs ci(u), u...
متن کاملDuality for Min-Max Orderings and Dichotomy for Min Cost Homomorphisms
Min-Max orderings correspond to conservative lattice polymorphisms. Digraphs with Min-Max orderings have polynomial time solvable minimum cost homomorphism problems. They can also be viewed as digraph analogues of proper interval graphs and bigraphs. We give a forbidden structure characterization of digraphs with a Min-Max ordering which implies a polynomial time recognition algorithm. We also ...
متن کامل